Quartz Glass for Optics

PROPERTIES AND FIELDS OF APPLICATION

Fused Quartz and Fused Silica are types of Quartz Glass containing primarily silica in amorphous form. They are manufactured using several different processes.

Fused Quartz is made by melting of high purity naturally occurring quartz crystals at around 2000°C using either an electrically heated furnace (electrically fused) or a gas/oxygen-fuelled furnace (flame fused). Fused Quartz is normally transparent.

Fused Silica is produced using high purity silica sand as the feedstock and is normally melted using an electric furnace, resulting in a material that is translucent or opaque. This opacity is caused by very small air bubbles trapped within the material.

Synthetic Fused Silica is made from a silicon-rich chemical precursor and there are two main grades of the material which are widely utilized for optical manufacturing:

- UV grade of synthetic FS (KU-1); produced by continuous high temperature hydrolysis of silicon tetrachloride SiCl4 in hydrogen-oxygen flame;
- UV-IR grade of synthetic FS (KS-4V), produced by complex process which involves chemical gasification of silicon, oxidation of this gas to silicon dioxide (SiO₂), and thermal fusion of the resulting ash in vacuum.

Both Synthetic Fused Silica grades are ultra pure, single component glasses with a unique combination of thermal, optical and mechanical properties, which make them the preferred materials for use in a variety of processes and applications where other materials are not suitable. The very high purity (over 99.9%) ensures minimum contamination in process applications. These materials can routinely withstand temperatures of over 950°C and due to their very low coefficient of thermal expansion can be rapidly heated and cooled with virtually no risk of breakage due to thermal shock. All this together with excellent transmission in compare with most other glasses make them useful materials for production of superior quality optical windows, lenses, prisms, beam-splitters, beamcombiners, cold/hot mirrors, et cetera, and so on. These materials are inert to most substances, including virtually all acids, allowing their use in rather severe environments. The dielectric properties and very high electrical receptivity of these materials over a wide range of temperatures together with their low thermal conductivity allow their use as an electrical and thermal insulating material in wide range of environments. The combination of thermal, chemical, and UV stability together with high DUV transparency make them an excellent choice for projection masks for photolythography.

Tydex produces a wide range of optical components from UV-FS and UV-IR FS so please have a look at the chapters to get more information: Optics for Nd: YAG Laser; Optics for UV-VIS-NIR Lasers; Optics for Spectroscopy.

<u>UV-FS (KU-1)</u> features high transparency within ultraviolet and visible regions. It has no absorption bands within 170-250nm wavelength interval. It has an intensive OH-absorption band at 2600-2800nm wavelength range. This grade does not express fluorescence as a result of UV excitation and is characterized by optical-radiation stability. It is practically free from bubbles and inclusions. The nearest analogues of quartz glass KU-1 are:

Suprasil Standard (Heraeus), Spectrosil A and B (Saint-Gobain), Corning 7940 (Corning), Dynasil 1100 and 4100 (Dynasil).

<u>UV-IR FS (KS-4V)</u> combines excellent physical properties with outstanding optical characteristics from DUV (through VISible) to middle IR wavelength range and is the preferred material for transmission optics over this wide spectral diapason. It has no absorption bands within 170-250nm wavelength range as well as no OH-absorption at around 2700nm. It is practically free from bubbles and inclusions. At near IR range the nearest analogue of quartz glass KS-4V is Infrasil (Heraeus).

Below is comparative and summarizing table of the properties of these two grades of synthetic fused silica.

KU-1	KS-4V					
Max. available diameter of the material, mm						
melted blocks of	- melted blocks of					
D220x200 mm-thick	D260x400mm-thick;					
	 molded blocks of 					
	D320x10mm-thick					
The edges of transmission range, nm						
160-4350	150-4350					
Transmission	range where					
an average transmissi	on bigger 90%, nm					
180-2100	190-3500					
UV transmission vs wavelength for 10mm-thick sample						
170nm - above 65%	170nm - above 50%					
180nm - 80%	180nm - 78%					
190nm - 86%	190nm - 83%					
OH-content, ppm						
< 2000	< 0.1					
Fluorescence (afte	r UV excitation)					
none	none					
Total metallic in	ipurities, ppm					
< 5	< 0.1					
Birefringence co	nstant, nm/cm					
< 5	< 10					
Melting 1						
continuous high temperature	melting of silicon dioxide					
hydrolysis of silicon tetrachloride	and thermal fusion					
in hydrogen-oxygen flame	of the resulting ash in vacuum					
Annealing	point, °C					
1120	1250					
Softening	point, °C					
1600	1750					
Optical-radiation stability						
(Co ⁶⁰ gamma-irradiation (1.15MeV))						
stable	stable up to 11MGray doze					

PDEX® Domostroitelnaya str. 16, 194292 St.Petersburg, RUSSIA Tel: 7-812-3346701, -3318702; Fax: 7-812-3092958 E-mail: optics@tydex.ru, URL: http://www.tydex.ru

Optical Quality

KU-1	KS-4V				
According to					
Russian State Standard	Russian Technical Standard				
#15130-86	#5933-030-12617929-98				
content of bubbles and inclusions					
within 100cm³ material volume					
0 grade according to	0 grade according to				
DIN58927,	DIN58927,				
MIL-G-174B	MIL-G-174B				
area with bubb	area with bubbles within 100cm ³				
material volume, mm ²					
< 0.03	< 0.03				
maximal bubble's diameter per 1kg					
of the material, mm					
< 0.2	< 0.15				
material optical homogeneity at block diameter:					
220mm, 190mm, 70-90mm					
delta n $< 5 \times 10^{-6}$	delta n is around 7 x 10 ⁻⁶				
delta n $< 5 \times 10^{-6}$	delta n $< 7 \times 10^{-6}$				
delta n $< 5 \times 10^{-6}$	delta n $< 1.5 \times 10^{-6}$				

IDENTICAL PROPERTIES OF BOTH GRADES

Density, g/cm ³	2.21		
Refractive index	n _F (486nm)	1.4631	
	n _d (588nm)	1.4585	
	n _C (656nm)	1.4564	
Abbe constant		67.8	
Thermal coeffic	ient of linear	0.55 x 10 ⁻⁶	
expansion at th	e temperature		
range 20-1000°			
Knoop hardness, kg/mm ²		500	
Poisson ratio, (T = 25°C)		0.17	
Bulk modulus, GPa (T=25°C)		36.9	
Tensile strength, MPa		50	
Compressive strength, GPa		1.1	
Young's modulus, GPa (T=25°C)		73	
Rupture modulus, MPa (T=25°C)		50	
Shear modulus, GPa (T=25°C)		31	
Strain point, °C		1025	
Max. service temperature, °C		950 – continuous,	
_		1200 – limited period	
Dielectric strength, kV/cm		250-400	
Thermal conductivity, W/(m x K)		1.38	
$(T = 25^{\circ}C)$			
Specific heat capacity, J/(kg x K)		728	
$(T = 25^{\circ}C)$			
Chemical stabili	High resistance to		
		water and acids	
	(except hydrofluoric)		

SYNTHETIC FUSED SILICA REFRACTIVE INDEX VS WAVELENGTH

(for KU-1 is valid up to 2 µm)

Wave	Refractive	Wave	Refractive	Wave	Refractive
length, µm	Index	length, µm	Index	length, µm	Index
0.2	1.551	0.7	1.455	1.7	1.442
0.22	1.528	0.75	1.454	1.8	1.441
0.25	1.507	0.8	1.453	1.9	1.440
0.3	1.488	0.85	1.452	2.0	1.438
0.32	1.483	0.9	1.452	2.2	1.435
0.36	1.475	1.0	1.450	2.4	1.431
0.4	1.470	1.1	1.450	2.6	1.428
0.45	1.466	1.2	1.448	2.8	1.424
0.5	1.462	1.3	1.447	3.0	1.419
0.55	1.460	1.5	1.445	3.2	1.414
0.60	1.458	1.6	1.443	3.37	1.410
0.65	1.457				

Tydex can process these materials well into 20/10 scr/dig (MIL-0-13830A) and lambda/10 @ 632 nm (TWD and surface accuracy). Standard catalogue windows and lenses (D12.7 mm and D25.4 mm) are available from our stock.

Typical transmission curves (included Fresnel reflection losses) are shown at Fig. 1 and Fig. 2.

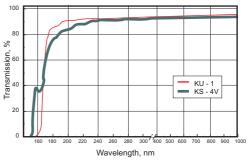


Fig.1. Transmission of KU-1 and KS-4V at 150-1000 nm. Samples thickness is 10 mm.

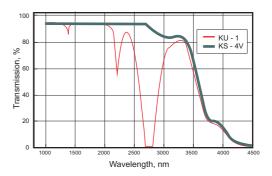


Fig. 2. Transmission of KU-1 and KS-4V at 1000-4500 nm. Samples thickness is 10 mm.

Please pay attention that this article is only for your information. We do supply neither KU-1 nor KS-4V in blanks or as raw materials. Our standard products are finished (polished, coated) parts.

