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Abstract—Breaking reciprocity in optical systems is enabling
the possibility of implementing devices with unidirectional wave
propagation. Currently, there is an active search for suitable
material with an efficient nonreciprocal response at the terahertz
(THz) frequency range. Ideally, such material should allow
low-loss operation without an external magnetic field at room
temperature. Gyrotropic hexaferrite ceramic is highly promising
for achieving optical isolation in the THz spectral range. Here,
we demonstrate a broadband self-biased THz isolator based on
magnetized aluminum-substituted barium hexaferrite. We reveal
the necessary surface density of the hexaferrite sample for the
realization of THz isolation. The proposed device exhibits no
less than 30 dB of isolation from 0.2 to 1 THz. Moreover, we
show that the gyrotropy properties of hexaferrite ceramics can be
reasonably predicted by their magnetic properties. This device is
expected to be useful for applications where one-way propagation
of broadband THz wave is desired.

Index Terms—Terahertz isolator, Nonreciprocal device, Fara-
day effect, M-type hexaferrite.

I. INTRODUCTION

TERAHERTZ (THz) electromagnetic radiation is endowed
with rich scientific and technological opportunities [1],

[2], [3], applicable in a wide variety of fields, from spec-
troscopy [4] and sensing [5] to imaging [6] and communica-
tions [7]. However, recent development in intense THz sources
and high-sensitive THz detectors make apparent the lack of
efficient optical components operating in that frequency range,
particularly nonreciprocal ones. Breaking Lorentz reciprocity
results in new functionality that are unattainable for recip-
rocal systems [8], [9]. An isolator is a basic nonreciprocal
device allowing to realize one-way radiation transmission.
Such functionality allows canceling back reflections, which
results in electromagnetic sources protection, noise reduction,
impedance matching, and decoupling [10].

The main criteria for a high-performance isolator are broad-
band and high isolation, low insertion losses for propagation
in a forward direction, and operation at room temperature
without external magnetic field bias. Implementation of a THz
isolator meeting all of these criteria is a challenging task.
Several approaches have been applied for developing THz
isolator, each of which has its own limitations and drawbacks.
The utilization of space-time modulated media requires high-
speed modulation of material parameters in time by external
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forces [11], [12], which is difficult in practical realization.
Another mechanism is based on incorporating nonlinear mate-
rials [13]. In that case, isolation performance is fundamentally
power-dependent and suffers from dynamic nonreciprocity
constraints [14]. The most common way for isolator realization
is based on magneto-optical (MO) effects. The operational
principle of a typical MO isolator relies on 45◦ Faraday rotator
and a pair of specifically oriented polarizers. After a round trip
through such a system, the radiation acquires 90◦ polarization
rotation in total and is blocked by the front polarizer. However,
there is a lack of suitable THz MO materials for the realization
of a high-performance THz isolator. Yttrium iron garnet (YIG)
metasurface [15], two-dimensional materials [16], and high-
mobility semiconductors, such as InSb [17] and HgTe [18]
allow achieving giant Faraday rotation in the THz frequency
range. Several THz isolators have been proposed based on
InSb magnetoplasmonic properties [19], [20], [21], [22], [23].
In [24], the THz isolator based on a three-layer graphene stack
has been demonstrated. However, all the proposed solutions
are requiring an external magnetic field, which makes such
isolators more complex and bulky. Another material enabling
to realize complete THz isolator without applying external
magnetic bias is magnetized ferrites [25], [26], which are
distinguished by broadband Faraday rotation. Unfortunately,
the performance of ferrite isolators is often limited by large
insertion losses.

Within this context, it is highly desirable to find a new
material enabling realization THz isolator operating without
external bias at room temperature with superior magneto-
optical properties over existing options. Trying to comply with
these demands, recently, several studies were devoted to the
characterization of hexaferrite ceramics in the THz frequency
range [27], [28], [29], [30]. These works are focused on the
investigation of commercially available hexaferrites. In [31],
we have synthesized a new perspective hexaferrite ceramics
(high-dense BaAl1.4Fe10.6O19) for utilization as a Faraday
rotator in the THz isolator.

In this paper, we fabricated the BaAl1.4Fe10.6O19 hexa-
ferrite samples of different thicknesses and densities. The
Faraday rotation spectra of these longitudinally magnetized
samples were measured in the THz frequency range at room
temperature. The results show that Faraday rotation angle
linearly depends on surface density of the samples. As a result,
we revealed the suitable sample parameters for obtaining the
required 45◦ rotation. Then, we assembled a THz isolator by
placing a hexaferrite 45◦ Faraday rotator between a pair of
polarizers and measured its isolation performance. Obtained
isolation spectra exhibits broadband character. Moreover, we
discuss the possibility to predict induced THz Faraday rotation
utilizing only the magnetic characteristics of hexaferrites.
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II. SAMPLES AND METHODS

The investigated BaAl1.4Fe10.6O19 samples have been syn-
thesized using iron (Fe2O3) and aluminum (Al2O3) oxides and
barium carbonate (BaCO3) with stoichiometric proportions
in accordance with [31]. The components were mixed and
annealed in air. Then, the resulting ferrite powder was pressed
in a constant magnetic field of 795 kA/m. After pressing
process, the samples were again annealed in an oxygen at-
mosphere. A total of 11 samples with different densities (ρ)
and thicknesses (d) were fabricated. The thickness of the
sample with ρ = 4.91 g/cm3 was successively grounded off
from 3.55 mm to 2.8 mm. The parameters of all investigated
samples are listed in Table I.

TABLE I
DENSITIES AND THICKNESSES OF BAAL1.4FE10.6O19 HEXAFERRITE

SAMPLES.

Sample № Density, ρ (g/cm3) Thickness, d (mm)
1 5.068 1.0
2 5.129 1.17
3 5.061 1.3
4 5.081 1.43
5 4.95 2.0
6 5.076 2.38
7 4.91 2.8
8 4.91 2.9
9 4.91 3.0

10 4.91 3.25
11 4.91 3.55

The crystal structure of the samples was characterized at
room temperature using diffractometer DRON-7 with Cu-Kα
radiation source (λ = 1.5406 Å) in the 2θ range from 10◦ to
80◦. Obtained X-ray diffraction (XRD) patterns were analyzed
by the Rietveld method using the FullProf software [32]. The
XRD pattern for a 2.8 mm-thick sample is presented in Fig. 1.

Fig. 1. X-ray diffraction pattern of BaAl1.4Fe10.6O19. Red dots represent
experimental data, a dark curve is calculated pattern by Rietveld method,
green vertical bars are for the diffraction peaks position, and the lower blue
curve is a difference between experimental and calculated data.

The studied sample has a hexagonal structure with space
group P63/mmc. Extracted by Rietveld method lattice param-
eters a = 5.867 Å and c = 23.119 Å are well consistent with
previously obtained values for aluminum-substituted barium
hexaferrites [33].

The Faraday rotation spectra of hexaferrite samples were
measured using the THz time-domain spectroscopy system

(Menlo Systems TERA K8). A schematic representation of
the experimental setup is shown in Fig. 2.

Fig. 2. Experimental THz polarimetry scheme.

To measure the Faraday rotation effect, the hexaferrite
samples were preliminarily magnetized up to saturation. For
the sample magnetization the static magnetic field of 795-
955 kA/m was applied. The measurement scheme consists of
two polarizers defining linear polarization for generated and
detected signals. The magnetized BaAl1.4Fe10.6O19 sample
was placed between the first polarizer (set at 0◦) and the
analyzer. A rotatable linear polarizer was used as an analyzer.
To evaluate the Faraday rotation, two measurements were
performed for each sample when the analyzer was set at 0◦ and
45◦ positions, respectively. Then, the obtained time-domain
signals were processed by Fourier transform. The Faraday
rotation angle can be derived using the following relation [34]:

θF =
1

2
arctan

2<(E∗
xEy)

|Ex|2 − |Ey|2
. (1)

Here, two mutually orthogonal complex electric field com-
ponents (Ex and Ey) can be described using the complex
electric field components of THz radiation transmitted through
the system (Fig. 2) when the analyzer is set at 0◦ and 45◦

positions (complex E0 and E+45, respectively) as [35]:(
Ex
Ey

)
=

(
E0

−E0 + 2E+45

)
. (2)

All of our spectroscopy experiments were performed at
room temperature.

III. RESULTS

The Faraday rotation spectra for several BaAl1.4Fe10.6O19

samples with different thicknesses and densities are shown in
Fig. 3.

As expected, the Faraday rotation angle increases for higher
thicknesses of hexaferrite samples. Moreover, all the inves-
tigated samples exhibit broadband rotation. To implement a
commonly used isolator based on the Faraday effect, the
rotation angle of 45◦ should be achieved. The corresponding
desired value of rotation angle is plotted by a dashed line in
Fig. 3. The most relevant sample for usage as a THz isolator
basis is the 2.8 mm-thick (№ 7) sample.

An important task is to predict the required thickness of
the Faraday rotation medium for achieving 45◦ angle of
polarization plane rotation. However, our previous study [31]
revealed the strong dependence of the sample density on the
Faraday rotation effect. Therefore, the dependence of θF on
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Fig. 3. Faraday rotation spectra of BaAl1.4Fe10.6O19 with different thick-
nesses and densities. The notation for samples is set in accordance with
Table I.

the surface density of the samples (ρ×d) should be considered.
Figure 4 shows the variation of the Faraday rotation angle
against a product of hexaferrite thickness to its density (ρ×d)
at 0.4 THz.

Fig. 4. Faraday rotation of BaAl1.4Fe10.6O19 samples with different thick-
nesses and densities at 0.4 THz.

It is seen that the measured Faraday rotation is linearly
proportional to the surface density of the samples. Corre-
sponding approximation by linear function is also shown by
a dashed line in Fig. 4. Using the obtained Faraday rotation
experimental points at 0.4 THz we can define the coefficient
relating the θF and the product ρ × d, which is equal to
35 degrees×cm2/g.

Then, we have assembled the 2.8 mm-thick
BaAl1.4Fe10.6O19 sample into the Faraday isolator
configuration (Fig. 5a). To do that, the hexaferrite was
placed between two polarizers oriented at an angle of 45◦

relative to each other. The 1-inch polypropylene polarizers
with 1200 lines per mm were used in isolator system [36].

The north pole of the hexaferrite was placed closer to the
THz source. The transmission axis of the second polarizer
(closer to the detector) was rotated by 45 degrees clockwise
with respect to the transmission axis of the first polarizer. The
isolation performance of the device was accessed by rotating
the isolator system (hexaferrite and two polarizers) by 180◦

with respect to the direction of radiation propagation, using
the following expression:

Iso = 10 log

(
Tfor
Tback

)
, (3)

where Tfor is the forward transmission and Tback is the
backward transmission through the isolator. The resulting
isolation spectrum is shown in Fig. 5c.

Fig. 5. Photograph of the isolator device based on 2.8 mm-thick
BaAl1.4Fe10.6O19 (a), its forward and backward transmission spectrum (b),
and isolation spectrum (c).

The transmission in the forward direction decreases with
the frequency increasing (Fig. 5b), defining the operational
bandwidth. If we set the requirement on the minimum allowed
transmission in the forward direction as 20%, the isolator
operating range is up to 650 GHz. As seen from Fig. 5c
the isolation spectrum exhibits broadband character with the
maximum value of 35 dB at 0.3 THz. The lower isolation per-
formance in the range from 0.1 THz to 0.2 THz is associated
with the dispersion of Faraday rotation angle in this range (θF
is higher than 45◦ at 0.1-0.2 THz). Rotation dispersion in this
range is caused by the ferromagnetic resonance. Moreover, the
isolation performance should be even higher for the reflected
back wave (i.e., transmitted in the forward along with the
backward direction). It is also known that hexaferrite samples
have a high refractive index (more than 4) [31], which results
in high reflection losses. In our case, the reflection losses
can be expressed as R = (

√
ε − 1)2/(

√
ε + 1)2 = 0.37,

where ε = 16.8 is the permittivity of the hexaferrite sample.
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However, such losses can be reduced in a predefined frequency
range by anti-reflection coatings.

To evaluate the performance of the designed THz isolator,
the comparison with some best previously reported THz isola-
tors is given in Table II. The advantage of the proposed isolator
is in the broadest operation bandwidth at room temperature
without applying external magnetic field.

IV. DISCUSSION

In order to predict gyrotropy properties of hexaferrite
samples without their direct measurements, we employ an
approach based on permeability tensor derivation. The hex-
aferrite can be characterized by the permeability tensor as:

¯̄µ(ω) =

 µ(ω) −jκ(ω) 0
jκ(ω) µ(ω) 0

0 0 µ0

 , (4)

where µ0 is the vacuum permeability, while the tensor
elements µ(ω) and κ(ω) are expressed using the following
relations:

µ(ω) = µ0

(
1− ω0ωm

ω2 − ω2
0

)
, (5)

κ(ω) = µ0
ωωm

ω2 − ω2
0

. (6)

In Eqs. 5, 6 ω0 is the Larmor precession frequency, ωm is
the saturation magnetization frequency, which are expressed
as:

ω0 = µ0γHi, (7)

ωm = µ0γMs, (8)

where Hi is the internal magnetic field, Ms is the saturation
magnetization and γ = −e/me = −1.7592×1011 C/kg is the
gyromagnetic ratio.

Faraday rotation angle is proportional to the ferrite thickness
(d) and can be calculated as:

θF =
k+ − k−

2
d, (9)

where k+ and k− are the propagation constants for the right-
hand circularly polarized (RHCP) and the left-hand circularly
polarized (LHCP) waves, respectively. The propagation con-
stants can be represented with effective permeability for the
RHCP wave (µ + κ) and the LHCP wave (µ − κ) using the
following expressions:

k+ = ω
√
ε0ε(µ+ κ), (10)

k− = ω
√
ε0ε(µ− κ), (11)

where ε0 is the vacuum permittivity, and ε = 16.8 is the
extracted permittivity of the ferrite using transmission-mode
terahertz time-domain spectroscopy method described in [38]
for the investigated frequency range.

The saturation magnetization (Ms) can be determined as
4πMs = 4πms/mρ (m is the sample mass, ρ is the sample
density) by measuring magnetic moment ms using vibrating
sample magnetometry. The saturation magnetization for 45◦-
rotating sample (№ 7) was found to be 205 kA/m.

The internal magnetic field in hexaferrite is defined as [27]:

Hi = HA +Hext +Hd, (12)

where HA is the anisotropic magnetocrystalline field,
Hext = 0 kA/m is the external applied field, and Hd is
the demagnetizing field. The BaAl1.4Fe10.6O19 sample has
a strong anisotropy field HA = 1790 kA/m, which was
measured by the gyromagnetic resonance (GMR) method
in a constant magnetic field. The demagnetization field is
Hd = −M , where M = 195 kA/m is the magnetization of the
ferrite obtained from magnetic hysteresis loop (see Fig. 6).

Fig. 6. Magnetic hysteresis loop of the 2.8 mm-thick BaAl1.4Fe10.6O19

sample.

Fig. 7 demonstrates the Faraday rotation spectrum obtained
using Eqs. 5-12.

The close agreement between the predicted and measured
values of the Faraday rotation in Fig. 7 confirms the reliability
of the utilized approach. Thus, the gyrotropy properties of
hexaferrite ceramics in the THz frequency range can be
estimated by their magnetic properties. The difference between
calculated and measured data in the low-frequency region is
associated with the neglection of the losses in calculation for
simplicity. In reality, the losses lead to the damping out of the
ferromagnetic resonance.

V. CONCLUSION

To conclude, we presented a complete broadband THz isola-
tor that operates without external magnetic bias at room tem-
perature. The high-dense BaAl1.4Fe10.6O19 magneto-optical
hexaferrite was chosen as a basis of the nonreciprocal isolator
with Faraday geometry. We have obtained over 30 dB of
isolation in the 0.2-1 THz band. We found a relation be-
tween Faraday rotation and surface density of the hexaferrite
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TABLE II
COMPARISON OF DERIVED RESULTS WITH RECENTLY REPORTED STUDIES ON THZ ISOLATORS.

Reference Maximum isolation Operating temperature External magnetic field Bandwidth
[26] - room 0 T up to 500 GHz
[24] 20 dB room 7 T 50 GHz
[20] 35 dB room 0.2-0.35 T 45 GHz
[23] 18.8 dB 180 K 0.13 T 0.8–1.3 THz
[37] 52 dB room 0.68 T 0.14 GHz
[this work] 35 dB room 0 T up to 650 GHz

Fig. 7. Faraday rotation spectra for 2.8 mm-thick BaAl1.4Fe10.6O19 sample:
measured value (red symbols) and calculated data using Eq. 9 (black solid
line).

ceramics. At the same time, we have verified an approach
for the prediction of hexaferrite gyrotropy characteristics only
through its magnetic properties. Finally, we emphasize that
the proposed devise accommodates high isolation performance
with a simple design.
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